Teoremas de incompletitud de Gödel
Gödel
Kurt Gödel a los 19 años de edad, cinco años antes de la demostración de los teoremas.
Teoremas de incompletitud de Gödel
Kurt Gödel o también Kurt Goedel ([ˈkʊʁt ˈɡøːdəl]; Brünn, Imperio austrohúngaro, actual República Checa, 28 de abril de 1906-Princeton, Estados Unidos; 14 de enero de 1978) fue un lógico, matemático y filósofo austriaco-estadounidense.1
Se le considera uno de los lógicos más importantes de todos los tiempos. Su trabajo ha tenido un impacto inmenso en el pensamiento científico y filosófico del siglo XX. Al igual que otros pensadores —como Gottlob Frege, Bertrand Russell, A. N. Whitehead y David Hilbert—, Gödel intentó emplear la lógica y la teoría de conjuntos para comprender los fundamentos de la matemática.
Se le conoce sobre todo por sus dos teoremas de la incompletitud, publicados en 1931, un año después de finalizar su doctorado en la Universidad de Viena. El más célebre establece que para todo sistema axiomático recursivo auto-consistente lo suficientemente poderoso como para describir la aritmética de los números naturales (la aritmética de Peano), existen proposiciones verdaderas sobre los naturales que no pueden demostrarse a partir de los axiomas. Para demostrar este teorema, desarrolló una técnica denominada ahora numeración de Gödel, que codifica expresiones formales como números naturales.
También demostró que la hipótesis del continuo no puede refutarse desde los axiomas aceptados de la teoría de conjuntos, si dichos axiomas son consistentes. Realizó importantes contribuciones a la teoría de la demostración al esclarecer las conexiones entre la lógica clásica, la lógica intuicionista y la lógica modal.
Hacia el final de la década de 1940, Gödel demostró la existencia de soluciones paradójicas a las ecuaciones de campo de la relatividad general de Albert Einstein. Estos "universos rotatorios" permitirían viajar en el tiempo y provocaron dudas en Einstein sobre su propia teoría. Sus soluciones se conocen como la métrica de Gödel (o el Universo de Gödel).
Durante sus muchos años en el Instituto, los intereses de Gödel se tornaron hacia la filosofía y la física. Estudió y admiró las obras de Gottfried Leibniz, pero llegó a la conclusión (sin evidencia) de que la mayor parte del trabajo de Leibniz había sido suprimida. En menor medida también estudió a Kant y a Edmund Husserl. Al principio de los años 1970, Gödel distribuyó entre sus amistades una elaboración de la demostración ontológica de Leibniz sobre la existencia de Dios, la cual se conoce ahora como la demostración ontológica de Gödel.
En sus últimos años, Gödel sufrió de períodos de inestabilidad y enfermedad mental. Tenía temores obsesivos a ser envenenado, y no comía a menos que su esposa Adele preparara su comida. A finales de 1977, Adele fue hospitalizada durante seis meses y no pudo continuar preparándole la comida. En su ausencia, Gödel rehusó comer, hasta el punto de dejarse morir de hambre. En el momento de su muerte pesaba 65 libras (32.5kg). El certificado de defunción en el Hospital de Princeton, el 14 de enero de 1978, dice que murió de «desnutrición e inanición causadas por perturbaciones en la personalidad»
Primer teorema de incompletitud de Gödel
Cualquier teoría aritmética recursiva que sea consistente es incompleta.
Segundo teorema de incompletitud de Gödel
En toda teoría aritmética recursiva consistente T, la fórmula Consistente T no es un teorema.
Una teoría aritmética es ω-inconsistente si, para alguno de sus teoremas formales de la forma ∃x, φ(x), puede refutarse cualquier caso particular, esto es, puede probarse ¬φ([n]), para cada numeral [n]. Una teoría que no es ω-inconsistente se dice ω-consistente.
Commentaires